Interaction between Foxc1 and Fgf8 during Mammalian Jaw Patterning and in the Pathogenesis of Syngnathia

نویسندگان

  • Kimberly E. Inman
  • Patricia Purcell
  • Tsutomu Kume
  • Paul A. Trainor
چکیده

Syngnathia (bony fusion of the upper and lower jaw) is a rare human congenital condition, with fewer than sixty cases reported in the literature. Syngnathia typically presents as part of a complex syndrome comprising widespread oral and maxillofacial anomalies, but it can also occur in isolation. Most cartilage, bone, and connective tissue of the head and face is derived from neural crest cells. Hence, congenital craniofacial anomalies are often attributed to defects in neural crest cell formation, survival, migration, or differentiation. The etiology and pathogenesis of syngnathia however remains unknown. Here, we report that Foxc1 null embryos display bony syngnathia together with defects in maxillary and mandibular structures, and agenesis of the temporomandibular joint (TMJ). In the absence of Foxc1, neural crest cell derived osteogenic patterning is affected, as osteoblasts develop ectopically in the maxillary prominence and fuse with the dentary bone. Furthermore, we observed that the craniofacial musculature is also perturbed in Foxc1 null mice, which highlights the complex tissue interactions required for proper jaw development. We present evidence that Foxc1 and Fgf8 genetically interact and that Fgf8 dosage is associated with variation in the syngnathic phenotype. Together our data demonstrates that Foxc1 - Fgf8 signaling regulates mammalian jaw patterning and provides a mechanistic basis for the pathogenesis of syngnathia. Furthermore, our work provides a framework for understanding jaw patterning and the etiology of other congenital craniofacial anomalies, including temporomandibular joint agenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FoxC1 is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis.

PURPOSE Alterations in FOXC1 dosage lead to a spectrum of highly penetrant, ocular anterior segment dysgenesis phenotypes. The most serious outcome is the development of glaucoma, which occurs in 50% to 75% of patients. Therefore, the need to identify specific pathways and genes that interact with FOXC1 to promote glaucoma is great. In this study, the authors investigated the loss of foxC1 in t...

متن کامل

Overlapping and distinct functions provided by fgf17, a new zebrafish member of the Fgf8/17/18 subgroup of Fgfs

Members of the fibroblast growth factor (Fgf) family are important signaling molecules in several inductive and patterning processes, and act as brain organizer-derived signals during formation of the early vertebrate nervous system. We isolated a new member of the Fgf8/17/18 subgroup of Fgfs from the zebrafish, and studied its expression and function during somitogenesis, optic stalk and midbr...

متن کامل

Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea.

The mammalian auditory sensory epithelium (the organ of Corti) contains a number of unique cell types that are arranged in ordered rows. Two of these cell types, inner and outer pillar cells (PCs), are arranged in adjacent rows that form a boundary between a single row of inner hair cells and three rows of outer hair cells (OHCs). PCs are required for auditory function, as mice lacking PCs owin...

متن کامل

Asymmetric Requirement of Surface Epithelial β-Catenin During the Upper and Lower Jaw Development

BACKGROUND Intercellular communication between epithelial and mesenchymal cells is central to mammalian craniofacial development. β-catenin is the gateway of canonical Wnt signaling, one of the major evolutionarily conserved cell-cell communication pathways in metazoa. In this study, we report an unexpected stage- and tissue-specific function of β-catenin during mammalian jaw development. RES...

متن کامل

Functional and phylogenetic analysis shows that Fgf8 is a marker of genital induction in mammals but is not required for external genital development.

In mammalian embryos, male and female external genitalia develop from the genital tubercle. Outgrowth of the genital tubercle is maintained by the urethral epithelium, and it has been reported that Fgf8 mediates this activity. To test directly whether Fgf8 is required for external genital development, we conditionally removed Fgf8 from the cloacal/urethral epithelium. Surprisingly, Fgf8 is not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013